@article{180401, keywords = {Animals, signal transduction, Recombinant Proteins, Biological Transport, Molecular Sequence Data, Cell Line, Amino Acid Sequence, Mice, Fibronectins, Cell Aggregation, Organelles, Adrenocorticotropic Hormone, Pituitary Gland, beta-Endorphin}, author = {Castle and Schwarzbauer and Wright and Castle}, title = {Differential targeting of recombinant fibronectins in AtT-20 cells based on their efficiency of aggregation}, abstract = {
In pituitary-derived AtT-20 cells, recombinant fibronectin containing the N-terminal matrix assembly domain and the C-terminal half of fibronectin does not follow the regulated secretory pathway but instead concentrates in distinct organelles prior to secretion. These organelles are larger than the dense-core granules and localize to the cell body at sites that differ from lysosomes, endosomes and endoplasmic reticulum. Unlike the dense-core granules, their discharge is not stimulated by 8-bromo-cyclic-AMP or phorbol esters. The kinetics of intracellular transport and secretion of the recombinant fibronectin suggest that it is present in a post-Golgi pool that turns over more slowly than constitutive vesicles. Indeed, the fibronectin-containing organelles disappear with a half-time of 3 hours after inhibiting protein synthesis. Presence of the organelles correlates with intracellular aggregation of dimeric fibronectin polypeptides. The organelles are absent in cells expressing monomeric recombinant fibronectin (lacking C-terminal dimerization sites) or the C-terminal half of fibronectin (which dimerizes but lacks the N-terminal matrix assembly domain), both of which aggregate less efficiently than dimeric fibronectin. Instead, the latter polypeptides enter the dense-core granules. Thus while the formation of the fibronectin-containing organelles may require efficient aggregation, it may not require a specific structural signal. Moreover, efficient aggregation is not necessarily a prerequisite for following the regulated pathway.
}, year = {1995}, journal = {J Cell Sci}, volume = {108 ( Pt 12)}, pages = {3827-37}, month = {12/1995}, issn = {0021-9533}, language = {eng}, }